Company Presentation/Poster Application

<table>
<thead>
<tr>
<th>Company Name</th>
<th>HDL Apomics</th>
</tr>
</thead>
</table>
| Life Sciences Sector | ☑ Diagnostics
☐ Biotech
☐ Pharmaceuticals
☐ Medical Devices
☐ Other (specify): |
| Commercial Focus/Therapeutic Area | Precision medicine in vitro diagnostics for HDL-related disease |
| Company Description (max 50 words) | Please attach |
| Company Development/Commercial Stage | Privately held pre-revenue |
| Product Name (if applicable) | |
| Product Description – Include value and advancements that the product brings to Precision Medicine (max 100 words) | Please attach |
| Funding Status | Private funding
NHLBI - SBIR |
| Presentation/Poster Objectives | ☑ Partnering
☒ Funding
☐ Other (specify): |
| Contact Name/Title | Scott W. Altmann, PhD - Founder/Scientific Officer |
| Contact Information | Email: scott.altmann@hdl-apomics.com
Phone: 732-531-0501
Address: Deal Lake Building STE-2E
560 Main Street
Allenhurst, NJ 07711 |

Thank You to Our Sponsors

Please print, fill out and submit this form by **May 11, 2016** to Debbie Mennito at DMennito@BioNJ.org.
Product Description:

High-density lipoprotein cholesterol (HDL-C) is a recognized risk factor for cardiovascular disease. However, compelling interventional trials and genetic studies now discredit the notion that HDL-C levels are related to CVD risk. Discovery of the intricate combinatorial composition of >100 proteins and ~200 lipid species that make up HDL exposed flaws in measuring HDL-C and is forcing clinicians to consider alternative HDL biomarkers. As HDL resides at the intersection of both cardio/metabolic and other unrelated physiological processes, the measurement of both HDL particle diversity and population heterogeneity is essential to understanding why and necessary for Precision Medicine guided CVD intervention.

Company Profile:

HDL Apomics offers a molecular phenotyping platform that exploits the complexity of the high-density lipoprotein proteome to generate a high-definition HDL “fingerprint” that measures particle diversity and particle population heterogeneity. This enabling technology puts unique disease-related biomarkers in use for drug development from target identification to cohort selection and monitoring.